MCP Server with Mem0 for Managing Coding Preferences | MCP Market

MCP Server with Mem0 for Managing Coding Preferences

Сервер MCP с интеграцией Mem0 для эффективного управления кодовыми предпочтениями. Позволяет хранить, искать и получать программные шаблоны, подключается к Cursor.

Mem0 MCP Server

PyPI version License: Apache 2.0

mem0-mcp-server wraps the official Mem0 Memory API as a Model Context Protocol (MCP) server so any MCP-compatible client (Claude Desktop, Cursor, custom agents) can add, search, update, and delete long-term memories.

Tools

The server exposes the following tools to your LLM:

| Tool | Description | | --------------------- | --------------------------------------------------------------------------------- | | add_memory | Save text or conversation history (or explicit message objects) for a user/agent. | | search_memories | Semantic search across existing memories (filters + limit supported). | | get_memories | List memories with structured filters and pagination. | | get_memory | Retrieve one memory by its memory_id. | | update_memory | Overwrite a memory's text once the user confirms the memory_id. | | delete_memory | Delete a single memory by memory_id. | | delete_all_memories | Bulk delete all memories in the confirmed scope (user/agent/app/run). | | delete_entities | Delete a user/agent/app/run entity (and its memories). | | list_entities | Enumerate users/agents/apps/runs stored in Mem0. |

All responses are JSON strings returned directly from the Mem0 API.

Usage Options

There are three ways to use the Mem0 MCP Server:

  1. Python Package - Install and run locally using uvx with any MCP client
  2. Docker - Containerized deployment that creates an /mcp HTTP endpoint
  3. Smithery - Remote hosted service for managed deployments

Quick Start

Installation

uv pip install mem0-mcp-server

Or with pip:

pip install mem0-mcp-server

Client Configuration

Add this configuration to your MCP client:

{
  "mcpServers": {
    "mem0": {
      "command": "uvx",
      "args": ["mem0-mcp-server"],
      "env": {
        "MEM0_API_KEY": "sk_mem0_...",
        "MEM0_DEFAULT_USER_ID": "your-handle"
      }
    }
  }
}

Test with the Python Agent

Click to expand: Test with the Python Agent

To test the server immediately, use the included Pydantic AI agent:

# Install the package
pip install mem0-mcp-server
# Or with uv
uv pip install mem0-mcp-server

# Set your API keys
export MEM0_API_KEY="sk_mem0_..."
export OPENAI_API_KEY="sk-openai-..."

# Clone and test with the agent
git clone https://github.com/mem0ai/mem0-mcp-server.git
cd mem0-mcp-server
python example/pydantic_ai_repl.py

Using different server configurations:

# Use with Docker container
export MEM0_MCP_CONFIG_PATH=example/docker-config.json
export MEM0_MCP_CONFIG_SERVER=mem0-docker
python example/pydantic_ai_repl.py

# Use with Smithery remote server
export MEM0_MCP_CONFIG_PATH=example/config-smithery.json
export MEM0_MCP_CONFIG_SERVER=mem0-memory-mcp
python example/pydantic_ai_repl.py

What You Can Do

The Mem0 MCP server enables powerful memory capabilities for your AI applications:

  • Remember that I'm allergic to peanuts and shellfish - Add new health information to memory
  • Store these trial parameters: 200 participants, double-blind, placebo-controlled study - Save research data
  • What do you know about my dietary preferences? - Search and retrieve all food-related memories
  • Update my project status: the mobile app is now 80% complete - Modify existing memory with new info
  • Delete all memories from 2023, I need a fresh start - Bulk remove outdated memories
  • Show me everything I've saved about the Phoenix project - List all memories for a specific topic

Configuration

Environment Variables

  • MEM0_API_KEY (required) – Mem0 platform API key.
  • MEM0_DEFAULT_USER_ID (optional) – default user_id injected into filters and write requests (defaults to mem0-mcp).
  • MEM0_MCP_AGENT_MODEL (optional) – default LLM for the bundled agent example (defaults to openai:gpt-4o-mini).

Advanced Setup

Click to expand: Docker, Smithery, and Development

Docker Deployment

To run with Docker:

  1. Build the image:

    docker build -t mem0-mcp-server .
    
  2. Run the container:

    docker run --rm -d \
      --name mem0-mcp \
      -e MEM0_API_KEY=sk_mem0_... \
      -p 8080:8081 \
      mem0-mcp-server
    
  3. Monitor the container:

    # View logs
    docker logs -f mem0-mcp
    
    # Check status
    docker ps
    

Running with Smithery Remote Server

To connect to a Smithery-hosted server:

  1. Install the MCP server (Smithery dependencies are now bundled):

    pip install mem0-mcp-server
    
  2. Configure MCP client with Smithery:

    {
      "mcpServers": {
        "mem0-memory-mcp": {
          "command": "npx",
          "args": [
            "-y",
            "@smithery/cli@latest",
            "run",
            "@mem0ai/mem0-memory-mcp",
            "--key",
            "your-smithery-key",
            "--profile",
            "your-profile-name"
          ],
          "env": {
            "MEM0_API_KEY": "sk_mem0_..."
          }
        }
      }
    }
    

Development Setup

Clone and run from source:

git clone https://github.com/mem0ai/mem0-mcp-server.git
cd mem0-mcp-server
pip install -e ".[dev]"

# Run locally
mem0-mcp-server

# Or with uv
uv sync
uv run mem0-mcp-server

License

Apache License 2.0